LTCC Chip Antennas – How to maximize performance

Outline

- Chip Antenna Characteristics
- Antenna Selection Considerations
- Circuit Design Constraints
- Layout Tips

Ultimate Goal -> To Maximize Performance

Motivation

Chip Antenna an efficient means of "connectivity" to modern portable compact electronic devices.

Miniature portable devices requires small antennas.

■ Can be internalized – i.e. "Concealed" within device.

Pros

- Chip antennas are small, cheap and performs well.
- Bulky external "whip" type antennas are thing of the past.

Cons

- Must be accounted for <u>during initial circuit</u> design stage
- Interference, proximity de-tuning & degradation concerns.

LTCC Chip Antennas

Chip Antenna Characteristics -1

- Features Ag radiating element encapsulated in ceramic.
- A quarter-wave ($\lambda/4$) monopole system.
- Works with GND plane to form dipole system.
- Certain "No-GND" metal-free space necessary.
- Small form factor, thin profile & light weight

Chip Antenna Characteristics - 2

- Omni-directional radiation.
- Linear Polarization.
- Mounting configuration flexibility.
- Frequency range supported: 0.08 GHz thru 10 GHz.
- WiFi, BT, WiMAX, UWB, GSM, CDMA, GPS etc.
- Suitable for Pick & Place.

Antenna Selection Considerations -1

- Size
- Frequency Band
- Bandwidth
- Polarization
- Peak Gain
- Average Gain
- Radiation Pattern requirements

Antenna Selection Considerations -2

- Successful Antenna design means harmonious interaction of the "seven" parameters (next page)
- Additional considerations for diversity systems
 - e.g. MIMO
- Overall performance is always system dependent.

Circuit Design Constraints

- 1. Size of the Circuit board.
- Layout of other board components.
- 3. Complexity of circuit.
- Proper GND/No-GND dimensions and clearances.
- 5. "Tuning" Matching Circuitry
- 6. Shielding
- 7. Suitable Enclosure (material)

GND-bottom layer underneath, prohibited Lavout Tips -1 3 **GND-top** layer 1 No ground area (yellow area)

- Good Placements ①
- Bad Placements ② & ③

Layout Tips -2

Don't put <u>any</u> metal objects or batteries (if applicable) above or below the yellow region Keep away any other metals from clearance area.

Layout Tips -3

Further examples of good antenna placement schemes

Layout Tips -4

 Antenna placement schemes for <u>antenna</u> <u>diversity</u> systems

Antenna Matching -5

A. Antenna Matching Setup

Test Board matching example

B. Measuring Steps

- One-port (S11) calibration for N.A. (Network Analyzer)
 Open-Short-Load for desired operating bandwidth
- 2. Mount probe (semi-rigid RF cable for our example) onto PCB and connect to N.A.
- Measure S11 of test board <u>without</u> antenna or any matching components and save as:
 →S11_open →save trace to memory of N.A.
- Measure S11 of test board with antenna and series 0Ω resistor mounted and save as: →S11_antenna
- 5. Set N.A. to data/memory mode (S11_antenna/S11_open) and display/save as: →S11_match
- 6. Match the trace of S11_match to $\underline{50\Omega}$ (center of Smith chart at the desired frequency)

1. Probe+Feed Line Smith chart display from 1-4GHz (not-normalized)

2. Probe+Feed Line (normalized)

Test Board matching example

1. Probe + Feed Line + Antenna Smith chart display from 1-4GHz (not-normalized)

2. Probe + Feed Line + Antenna (normalized)

Test Board matching example

Step 1 in matching:

Ant + shunt 3.9nH (normalized)

Step 2 in matching:

Ant + shunt 3.9nH + series 1.5pF (normalized)

Test Board matching example

Matched Return Loss chart

Matched Antenna Example

Test Board

General Specifications

Part Number	2450AT45A100
Frequency Range	2400 - 2500 Mhz
Peak Gain	3.0 dBi typ. (XZ-V)
Average Gain	1.0 dBi typ. (XZ-V)
Return Loss	9.5 dB min.

b) With Matching Circuit* (wide bandwidth)

* matching circuit and component values will depend on PCB layout, thickness, material, etc.

JTI P/N for Matching Circuit: Cap (1.5pF): 500R07S1R5BV4T Inductor (3.9nH): L-07C3N9SV6T

Conclusion – How to design

- 1st Determine the antenna location and space available on board
- 2nd Select the most appropriate antenna model
- 3rd Implement antenna in conformance with design rules
- 4th Match antenna to your system